COMPARISON OF TOPOLOGIES ON THE FAMILY OF ALL TOPOLOGIES ON X

JAE-RYONG KIM*

ABSTRACT. Topology may described a pattern of existence of elements of a given set X. The family $\tau(X)$ of all topologies given on a set X form a complete lattice. We will give some topologies on this lattice $\tau(X)$ using a fixed topology on X and we will regard $\tau(X)$ a topological space. Our purpose of this study is to comparison new topologies on the family $\tau(X)$ of all topologies induced old one.

1. Introduction.

Let X be a set. The family $\tau(X)$ would consist of all topologies on a given fixed set X. Here we want to give topologies on the family $\tau(X)$ of all the topologies using the given a topology τ on X and compare the topologies induced from the fixed old one.

The family $\tau(X)$ of all topologies on X form a complete lattice, that is, given any collection of topologies on X, there is a smallest (respectively largest) topology on X containing (contained in) each member of the collection. Of course, the partial order \leq on $\tau(X)$ is defined by inclusion \subseteq naturally.

In the sequel, the closure and interior of A are denoted by \bar{A} and int(A) in a topological space (X,τ) . The θ -closure of a subset G of a topological space (X,τ) is defined [8] to be the set of all point $x \in X$ such that every closed neighborhood of x intersect G non-emptily and is denoted by \bar{G}_{θ} (cf. [1],[5]). Of course for any subset G in $X, G \subset \bar{G} \subset \bar{G}_{\theta}$ and \bar{G}_{θ} is closed in X. The subset G is called G-closed if G is open, the G is open, the G is called G-closed if G-closed in G-closed if G-closed in G

Received October 10, 2017; Accepted September 19, 2017.

²⁰¹⁰ Mathematics Subject Classification: 54A10, 54C05, 54D05, 54D10.

Key words and phrases: comparison of topologies, topology field, θ topology, semi-regular space.

Research supported in part by Kookmin University Research Fund.

Similarly, the θ -interior of a subset G of a topological space (X, τ) is defined to be the set of all point $x \in X$ for which there exists a closed neighborhood of x contained in G. The θ -interior of G is denoted by $int_{\theta}G$. Naturally, for any subset G in X, $int_{\theta}(G) \subset G$. An open set U in (X, τ) is called θ -open if $U = int_{\theta}(U)$. By the definition of this θ -open, the collection of all θ -open in a topological space (X, τ) form a topology τ_{θ} on X which will called the θ topology induced by τ which is related to the semi-regular topology on (X, τ) (cf. [7] [3]).

The semi-regular topology τ_s is the topology having as its base the set of all regular open sets. A subset A of a topological space X is called regular open [7] if $A = int\bar{A}$. For any subset A of X, $int(\bar{A})$ is always regular open. The collection of all regular open subsets of a topological space (X, τ) form a base for a topology τ_s on X coarser than τ , (X, τ_s) is called the semiregularization of (X, τ) .

We should recall the definitions of almost-continuity and θ -continuity: A function $f: X \to Y$ is $almost-continuous(\theta$ -continuous) if for each $x \in X$ and each regular-open V(open V) containing f(x), there exists a open set U containing x such that $f(U) \subset V$ $(f(\bar{U}) \subset \bar{V})$ ([3]).

THEOREM 1.1. [3] Let $f: X \to Y$ be continous map. If $V \subset X$ is θ -open, then $f^{-1}(V)$ is θ -open.

THEOREM 1.2. [3] Let $f: X \to Y$ be a function from X onto Y that is both open and closed. Then f preserves θ -open sets.

2. Topology on the family $\tau(X)$ related to the θ topologies on X.

Let (X,τ) be a topological space, and $G \in \tau$. Let $i(G) = \{\zeta \in \tau(X) | G \in \zeta\}$ and denote $\epsilon = \{i(G) | G \in \tau\}$, a family of subset of $\tau(X)$. Then there is exactly one topology In_{τ} on $\tau(X)$ with ϵ as a subbasis. We will call this topology the inner topology induced by the topology $\tau([4])$.

If $\zeta \leq \eta$, then $\forall G \in \zeta$, $G \in \eta$. That is, if $\underline{i(G)} \ni \zeta$, then $\underline{i(G)} \cap \{\eta\} \neq \emptyset$. This implies $\zeta \in \overline{\{\eta\}}$. Conversely $\zeta \in \overline{\{\eta\}}$ implies $\zeta \leq \eta$. If this relation holds we say that ζ is a *specialization* of η [6]. For any $\eta \in \tau(X)$ we will denote the subset $\{\zeta \in \tau(X) | \zeta \geq \eta\}$ by $\uparrow (\eta)$. We shall also use later the notation $\downarrow (\eta)$ for $\{\zeta \in \tau(X) | \zeta \leq \eta\}$. Then since $\underline{i(G)} = \{\zeta \in \tau(X) | G \in \zeta\}$, $\underline{i(G)} = \uparrow (\{\emptyset, X, G\})$. Hence $\zeta \in \overline{\{\eta\}}$ if and only if $\zeta \leq \eta$. Since Alexandrov topology Υ on $\tau(X)$ is the collection of all upper sets in $\tau(X)$ (i.e. sets U such that $\eta \in U$ and $\eta \leq \zeta$ imply $\zeta \in U$)

[6], $i(G) \in \Upsilon$. Hence we have the following result [2]. If $\tau \leq \zeta \leq 1$, then $In_{\tau} \leq In_{\zeta} \leq In_{1} \leq \Upsilon$.

Now we will define a different topology on $\tau(X)$ the θ topology induced by given topology τ . Let (X,τ) be a space, and $G \in \tau$. Let $\theta(G) = \{\zeta \in \tau(X) \mid G : \theta - \text{open in } \zeta \}$. And denote $\beta = \{\theta(G) \mid G \in \tau\}$, a family of subset of $\tau(X)$. Then there is exactly one topology θ_{τ} on $\tau(X)$ with β as a subbasis. We will call also this topology θ_{τ} on $\tau(X)$ the θ topology induced by the topology τ .

If we consider θ as a map from $\tau(X)$ to $\tau(X)$ defined by $\theta(\eta) = \eta_{\theta}$, then we have next result ([3]):

Theorem 2.1. Let (X, τ) be a topological space. Then the induced map

$$\theta: (\tau(X), \theta_{\tau}) \to (\tau(X), \theta_{\tau})$$

is continuous.

Such map $\theta: (\tau(X), \theta_{\tau}) \to (\tau(X), \theta_{\tau})$ will be called θ -operator. Moreover this map satisfies that

COROLLARY 2.2.
$$\theta(\zeta \wedge \eta) \leq \theta(\zeta) \wedge \theta(\eta)$$
 and $\theta(\zeta) \vee \theta(\eta) \leq \theta(\zeta \vee \eta)$.

For a topological space (X, τ) , the collection of all open neighborhoods of p and empty set, that is, $\{V \in \tau | p \in V\} \cup \{\emptyset\}$ becomes a topology on X for any point $p \in X$. We will denote such a topology by τ_p and call *localized topology* of τ at p. We will denote the localized topology of the discrete topology $\mathcal{P}(X)$ on X at p by 1_p .

Denote $\tau_p(X) = \{\eta_p \mid \eta \in \tau(X)\}$ for a point $p \in X$. Since $\tau(X)$ is a complete lattice, we can easily find that $\tau_p(X)$ is a sublattice of $\tau(X)$. The smallest element of this sublattice $\tau_p(X)$ is $0_p=0$, the largest element is $\mathcal{P}(X)_p=1_p\neq 1$. We will call this sublattice $\tau_p(X)$ as sublattice of all localized topologies at p in X.

Now we will regard any member τ of $\tau(X)$ as a map from X to $\cup_p \tau_p(X) \subset \tau(X)$ defined by $\tau(p) = \tau_p$. Hence this map τ acts like a vector field on X. Such a map $f: X \to \tau(X)$ defined by $f(p) \in \tau_p(X)$ will be called *topology field* on X [4].

Theorem 2.3. [4] Topology field $\zeta:(X,\tau)\to(\tau(X),\,In_\tau)$ is continuous.

THEOREM 2.4. [3] If (X, ζ) is a θ topological space, then the topology field $\zeta:(X,\tau) \to (\tau(X), \theta_{\tau})$ is continuous.

COROLLARY 2.5. If (X,ζ) is a regular topological space, then the topology field $\zeta:(X,\tau)\to(\tau(X),\,\theta_\tau)$ is continuous.

Additionally, if f is open and closed and $\omega \in \theta(f^{-1}(G))$, then $f^{-1}(G)$ is θ -open in (X, ω) . By Theorem 1.5 ([3]), G is θ -open in $(X, f_*(\omega))$, i.e. $f_*(\omega) \in \theta(G)$. That is, $\omega \in f_*^{-1}(\theta(G))$. Consequently we have;

THEOREM 2.6. If $f:(X,\tau)\to (Y,\eta)$ is a continuous and open and closed surjective map, then for any open G in Y

$$f_*^{-1}(\theta(G)) = \theta(f^{-1}(G)).$$

Let (X, τ) and (Y, ζ) be topological spaces. We may assume that $\tau(X)$ and $\tau(Y)$ are given the topologies θ_{τ} and θ_{ζ} respectively and assume that $\tau(X \times Y)$ is given topology $\theta_{\tau \times \zeta}$. Then we have the next theorem by [3].

Theorem 2.7. The multiplication $\times : \tau(X) \times \tau(Y) \to \tau(X \times Y)$ is continuous.

THEOREM 2.8. Let (X, τ) and (Y, ζ) be topological spaces. Then

$$\tau_{\theta} \times \zeta_{\theta} = (\tau \times \zeta)_{\theta}$$
.

Consequently we have the following commutative diagram:

$$\tau(X) \times \tau(Y) \qquad \xrightarrow{\times} \qquad \tau(X \times Y)$$

$$\downarrow \theta \times \theta \qquad \qquad \downarrow \theta$$

$$\tau(X) \times \tau(Y) \qquad \xrightarrow{\times} \qquad \tau(X \times Y).$$

Again we consider Θ as a map from $\tau(X)$ to $\tau(\tau(X))$ defined by $\Theta(\eta) = \theta_{\eta}$, then we have next result.

THEOREM 2.9. Let (X, τ) be a topological space. Then the induced map

$$\Theta: (\tau(X), \Upsilon) \to (\tau(\tau(X)), \Upsilon)$$

is continuous.

COROLLARY 2.10. Let (X, τ) be a topological space. Then the induced map

$$\Theta: (\tau(X), \theta_{\tau}) \to (\tau(\tau(X)), \theta_{\theta_{\tau}})$$

is continuous.

3. Topology on the family $\tau(X)$ related to the θ topologies on X.

DEFINITION 3.1. Let (X, τ) be a topological space, and $G \in \tau$. Let $w\theta(G) = \{\zeta \in \tau(X) \mid \text{there exist } \theta\text{-open O in } \zeta \text{ such that } O \subset G\}$. Denote $\beta = \{w\theta(G) \mid G \in \tau\}$, a family of subset of $\tau(X)$. Then there is exactly one topology $w\theta_{\tau}$ on $\tau(X)$ with β as a subbasis. We will call this topology $w\theta_{\tau}$ the weak θ topology induced by the topology τ .

It is natural $\theta_{\tau} \leq w\theta_{\tau}$.

THEOREM 3.2. If $\tau \leq \zeta \leq 1$, then $w\theta_{\tau} \leq w\theta_{\zeta} \leq w\theta_{1} \leq \Upsilon$.

Proof. For any $G \in \tau \leq \zeta$, by definition of $w\theta(G)$ we can naturally have $w\theta_{\tau} \leq w\theta_{\zeta}$. Now we will prove that every $w\theta(G)$ is upper set in $\tau(X)$. Let $\delta \in w\theta(G)$. Then there exists a θ -open O in (X, δ) such that $O \subset G$. Hence $O \in \delta_{\theta}$. If $\delta \leq \gamma$, we have by Theorem 2.1, $O \in \gamma_{\theta}$. This means O is θ -open in (X, γ) such that $O \subset G$. This implies $\gamma \in w\theta(G)$. Hence $w\theta(G)$ is upper set in $\tau(X)$. This completes the proof.

If we consider θ as a map from $\tau(X)$ to $\tau(X)$ defined by $\theta(\eta) = \eta_{\theta}$, then we have;

THEOREM 3.3. Let (X, τ) be a topological space. Then the induced map

$$\theta: (\tau(X), w\theta_{\tau}) \to (\tau(X), w\theta_{\tau})$$

is continuous.

Proof. Let $\zeta \in \tau(X)$ and $w\theta(K)$ is a neighborhood of $\theta(\zeta) = \zeta_{\theta}$ where $K \in \tau$. Then since $\zeta_{\theta} = \{U \in \zeta | U : \theta - \text{open in } (X, \zeta)\}$, there exists a θ -open set H in (X, ζ_{θ}) such that $H \subset K$. Hence H is also θ -open in (X, ζ) such that $H \subset K$. Consequently $\zeta \in w\theta(K)$, i.e. $w\theta(K)$ is a neighborhood of ζ which satisfied that $\theta(\theta(K)) \subset \theta(K)$. This completes the Theorem.

COROLLARY 3.4. If (X, ζ) is a θ topological space, then the topology field $\zeta: (X, \tau \to (\tau(X), w\theta_{\tau}))$ is continuous.

Proof. Let $p \in X$ and $w\theta(G)$ be a subbasic open neighborhood of $\zeta(p) = \zeta_p$. Then there is a θ -open O in (X, ζ_p) such that $O \subset G$. This implies O is θ -open in (X, ζ) because O is open set in (X, ζ) which contains the point p. Moreover since $G \in \tau$, G is a neighborhood of p. Hence if $q \in G$, $\zeta(q) = \zeta_q \in w\theta(G)$, so that $\zeta(G) \subset w\theta(G)$. This shows that topology field ζ is continuous.

COROLLARY 3.5. If (X,ζ) is a regular topological space, then the topology field $\zeta:(X,\tau)\to(\tau(X),\,w\theta_\tau)$ is continuous.

Let $f:(X,\tau)\to (Y,\eta)$ be a continuous surjective map. If we define a map $f_*:(\tau(X),w\theta_\tau)\to (\tau(Y),w\theta_\eta)$ by $f_*(w)=\{U\subset Y|f^{-1}(U)\in w\}$, then $f_*(0)=0$ and $f_*(1)=1$. Let $\omega\in\tau(X)$. For any subbasic open neighborhood $w\theta(G)$ of $f_*(\omega)$ in $(\tau(Y),w\theta_\eta)$, where G is open in (Y,η) , there is a θ -open O in $(Y,f_*(\omega))$ such that $O\subset G$. By Theorem 1.1, $f^{-1}(O)$ is θ -open in (X,ω) such that $f^{-1}(O)\subset f^{-1}(G)$. Thus $\omega\in w\theta(f^{-1}(G))$. Hence $w\theta(f^{-1}(G))$ is an open neighborhood of ω in $(\tau(X),w\theta_\tau)$. Consequently we have the next result.

THEOREM 3.6. Let $f:(X, \tau) \to (Y, \eta)$ be a continuous surjective map. If we define a map $f_*:(\tau(X), w\theta_\tau) \to (\tau(Y), w\theta_\eta)$ by $f_*(w) = \{U \subset Y | f^{-1}(U) \in w\}$, then the map f_* is continuous. If $\gamma \leq \delta$, then $f_*(\gamma) \leq f_*(\delta)$ and $f_*(\tau) \geq \eta$. And for any θ topology field ζ , the diagram

$$\begin{array}{ccc} (X,\tau) & \xrightarrow{f} & (Y,\eta) \\ \downarrow \zeta & & \downarrow f_*(\zeta) \\ (\tau(X), w\theta_\tau) & \xrightarrow{f_*} & (\tau(Y), w\theta_\eta) \end{array}$$

commutes. Furthermore if (Z, λ) is a topological space and $g: (Y, \eta) \to (Z, \lambda)$ is a map, then

$$(q \circ f)_* = q_* \circ f_*.$$

Finally, if $f:(X,\tau)\to (X,\tau)$ is the identity homeomorphism, then so is f_* .

Proof. The continuity of the map $f_*:(\tau(X), w\theta_\tau) \to (\tau(Y), w\theta_\eta)$ was proved already. And the commutativity of the diagram follows from the next fact.

$$f_*(\zeta_p) = \{U|f^{-1}(U) \in \zeta_p\} = \{U|p \in f^{-1}(U) \in \zeta\}$$
$$= \{U|f(p) \in U, f^{-1}(U) \in \zeta\} = \{U|U \in f_*(\zeta), f(p) \in U\}$$
$$= f_*(\zeta)_{f(p)}.$$

All other statements follow directly from the definitions.

Additionally, if f is open and closed and $\omega \in w\theta(f^{-1}(G))$, then there is a θ -open O in (X, ω) such that $O \subset f^{-1}(G)$. By Theorem 1.5 ([3]), f(O) is θ -open in $(X, f_*(\omega))$ such that $f(O) \subset G$, i.e., $f_*(\omega) \in w\theta(G)$. That is, $\omega \in f_*^{-1}(w\theta(G))$. Consequently we have the following theorem.

THEOREM 3.7. If $f:(X,\tau)\to (Y,\eta)$ is a continuous and open and closed surjective map, then for any open G in Y

$$f_*^{-1}(w\theta(G)) = w\theta(f^{-1}(G)).$$

Let (X, τ) and (Y, ζ) be topological spaces. We may assume that $\tau(X)$ and $\tau(Y)$ are given the topologies $w\theta_{\tau}$ and $w\theta_{\zeta}$ respectively and assume that $\tau(X \times Y)$ is given topology $w\theta_{\tau \times \zeta}$. Then we get the following result.

THEOREM 3.8. The multiplication $\times : \tau(X) \times \tau(Y) \to \tau(X \times Y)$ is continuous.

Proof. Let $(\alpha, \beta) \in \tau(X) \times \tau(Y)$. Then $\alpha \times \beta \in \tau(X \times Y)$. If $w\theta(W)$ is a neighborhood of $\times(\alpha, \beta) = \alpha \times \beta$, where W is open in $(X \times Y, \tau \times \zeta)$. Then there exists an θ -open set O in $\alpha \times \beta$ such that $O \subset W$. We may assume that $O = O_X \times O_Y$ is a basic open set in $(\tau(X \times Y), \alpha \times \beta)$. Since O is θ -open in $(\tau(X \times Y), \alpha \times \beta)$. Hence projection O_X and O_Y are θ -opens in (X, α) and (Y, β) respectively. Hence $(\alpha, \beta) \in \theta(O_X) \times \theta(O_Y)$. Moreover $\times(\theta(O_X) \times \theta(O_Y)) \subset \theta(O)$. In fact, if $\delta \in \theta(O_X)$ and $\gamma \in \theta(O_Y)$, then O_X is θ -open in (X, δ) and O_Y is θ -open in (Y, γ) . Since the product of θ -opens is θ -open [5], $O = O_X \times O_Y$ is θ -open in $(X \times Y, \delta \times \gamma)$ such that $O \subset W$. Hence $\delta \times \gamma \in w\theta(W)$. This completes the proof.

4. Topology on the family $\tau(X)$ related to the semi-regular topology on X.

DEFINITION 4.1. Let (X, τ) be a topological space, and $G \in \tau$. Let $s(G) = \{\zeta \in \tau(X) | G \text{isregular} - \text{openin}\zeta\}$. Denote $\beta' = \{s(G) | G \in \tau\}$, a family of subset of $\tau(X)$. Then there is exactly one topology s_{τ} on $\tau(X)$ with β' as a subbasis. We will call this topology s_{τ} the semireg topology induced by the topology τ .

THEOREM 4.2. If $\tau \leq \zeta \leq 1$, then $s_{\tau} \leq s_{\zeta} \leq s_1$.

Proof. Let $s(G) \in s_{\tau}$. Then for any $\delta \in s(G)$, G is regular-open in (X, δ) . Since $\tau \leq \zeta \leq 1$, $G \in \tau$ implies $G \in \zeta$. Consequently $\delta \in s(G) \in s_{\zeta}$.

Similarly as in the θ case if we consider s as a map from $\tau(X)$ to $\tau(X)$ defined by $s(\eta) = \eta_s$, then we have next result:

THEOREM 4.3. $Let(X,\tau)$ be a topological space. Then the induced map

$$s: (\tau(X), s_{\tau}) \to (\tau(X), s_{\tau})$$

is continuous.

Proof. Let $\zeta \in \tau(X)$ and s(K) is a neighborhood of $s(\zeta) = \zeta_s$ where $K \in \tau$. Then since $\zeta_s = \{U \in \zeta | U : \text{regur} - \text{open in } (X, \zeta)\}$, K is a regular-open set in (X, ζ_s) . Hence it is also regular-open in (X, ζ) . Consequently $\zeta \in s(K)$, i.e. s(K) is a neighborhood of ζ which satisfied that $s(s(K)) \subset s(K)$. This completes the proof of theorem.

Such map $s: (\tau(X), s_{\tau}) \to (\tau(X), s_{\tau})$ will be called semi-regularization operator. Moreover this map satisfies that the following corollary.

COROLLARY 4.4. $s(\zeta \wedge \eta) \leq s(\zeta) \wedge s(\eta)$ and $s(\zeta) \vee s(\eta) \leq s(\zeta \vee \eta)$.

Proof. This corollary follows from the above definition and Theorem 3.1.

Now we want to know the relations between s_{τ} and In_{τ_s} . Let $\eta \in s(G) \in s_{\tau}$, then $G \in \eta$, i.e. $\eta \in i(G)$. Hence it is natural that $s(G) \subset i(G)$. Let i(G) be a sub basic open in In_{τ_s} . Then $G \in \tau_s$. Hence G is regular-open in τ , that is $G = int^{\tau}\bar{G}^{\tau}$. Hence if $\zeta \in i(G)$ and (X, η) is regular, then by above Theorem 1.2, G is also regular-open in (X, η) . Hence $\eta \in s(G)$. Thus we have;

THEOREM 4.5. Let (X, τ) is a regular space. If we denote $\tau_{reg}(X)$ by the subset of all regular topologies in $\tau(X)$. Then the subspace $\tau_{reg}(X)$ of the space $(\tau(X), s_{\tau})$ and the subspace $\tau_{reg}(X)$ of the space $(\tau(X), In_{\tau_s})$ are identical.

THEOREM 4.6. If (X, ζ) is semi-regular space, then the topology field $\zeta:(X,\tau)\to(\tau(X),\,s_\tau)$ is continuous.

Proof. Let $p \in X$ and s(G) be a subbasic open neighborhood of $\zeta(p) = \zeta_p$. Then G is regular-open in (X, ζ_p) . This implies G is regular-open in (X, ζ) because G is open set in (X, ζ) which contains the point p. Moreover since $G \in \tau$, G is a neighborhood of p. Hence if $q \in G$, $\zeta(q) = \zeta_q \in s(G)$, so that $\zeta(G) \subset s(G)$. This shows that topology field ζ is continuous. \square

COROLLARY 4.7. If (X, ζ) is regular space, then the topology field $\zeta:(X,\tau)\to(\tau(X),\,s_\tau)$ is continuous.

Let $f:(X, \tau) \to (Y, \eta)$ be a continuous surjective map. If we define a map $f_*:(\tau(X), s_\tau) \to (\tau(Y), s_\eta)$ by $f_*(w) = \{U \subset Y | f^{-1}(U) \in w\}$,

then $f_*(0) = 0$ and $f_*(1) = 1$. Let $\omega \in \tau(X)$. For any subbasic open neighborhood s(G) of $f_*(\omega)$ in $(\tau(Y), s_{\eta})$, where G is open in (Y, η) , G is regular-open in $(Y, f_*(\omega))$. Since f is continuous, it is naturally almost-continuous. Hence $f^{-1}(G)$ is regular-open in (X, ω) . Thus $\omega \in s(f^{-1}(G))$. Hence $s(f^{-1}(G))$ is an open neighborhood of ω in $(\tau(X), s_{\tau})$.

Now we will prove that $f_*(s(f^{-1}(G))) \subset s(G)$. Let $\zeta \in s(f^{-1}(G))$. Then $f^{-1}(G)$ is regular-open in (X,ζ) . Since naturally the map $f:(X,\zeta) \to (Y,f_*(\zeta))$ is continuous, G is regular-open in $(Y,f_*(\zeta))$. This implies that $f_*(\zeta) \in s(G)$. Thus we have next theorem.

THEOREM 4.8. Let $f:(X, \tau) \to (Y, \eta)$ be a continuous surjective map. If we define a map $f_*:(\tau(X), s_\tau) \to (\tau(Y), s_\eta)$ by $f_*(w) = \{U \subset Y | f^{-1}(U) \in w\}$, then the map f_* is continuous. If $\gamma \leq \delta$, then $f_*(\gamma) \leq f_*(\delta)$ and $f_*(\tau) \geq \eta$. And for any semi-regular topology field ζ , the diagram

$$(X,\tau) \qquad \xrightarrow{f} \qquad (Y,\eta)$$

$$\downarrow \zeta \qquad \qquad \downarrow f_*(\zeta)$$

$$(\tau(X), s_\tau) \qquad \xrightarrow{f_*} \qquad (\tau(Y), s_\eta)$$

commutes. If, furthermore, (Z, λ) is a topological space and $g: (Y, \eta) \to (Z, \lambda)$ is a map, then

$$(g \circ f)_* = g_* \circ f_*.$$

Finally, if $f:(X,\tau)\to (X,\tau)$ is the identity homeomorphism, then so is f_* .

Proof. The proof of this theorem is very closed to the case of θ topological case.

Additionally, if f is open and closed and $\omega \in s(f^{-1}(G))$, then $f^{-1}(G)$ is regular-open in (X, ω) . By above Theorem 1.5, G is regular-open in $(X, f_*(\omega))$, i.e. $f_*(\omega) \in s(G)$. That is, $\omega \in f_*^{-1}(s(G))$. Consequently we have the next result.

LEMMA 4.9. If $f:(X,\tau)\to (Y,\eta)$ is continuous and open and closed surjective map, then for any open G in Y

$$f_*^{-1}(s(G)) = s(f^{-1}(G)).$$

References

- [1] H. M. Darwesh, A new topology from old one, Journal of the chungcheong mathematical society, **25** (2012), no. 3, 401-413.
- [2] J. R. Kim, Topology fields, toplogical flow and topological organisms, Journal of the Chungcheong mathematical society, **26** (2013), no. 1, 53-69.
- [3] J. R. Kim, Theta topology and its application to the family of all topologies on X, Journal of the chungcheong mathematical society, **28** (2015), no. 3, 431-441.
- [4] J. R. Kim and M. H. Woo, *Topology fields and fixed points of flows*, Research and Exposition in Mathematics, **27** (2003), 73-81 ©2003 Heldermann Verlag.
- P. E. Long and L. L. Herrongton, The T_θ-topology and fanitly continous functions, Kyungpook Math. J. 22 (1982), no. 1, 7-14.
- [6] P. T. Johnstone, Stone spaces, Cambridge University Press, 1982.
- [7] M. H. Stone, Application of the theroy if Boolean rings to general topology, Amer. Math. Soc. Trans. 41 (1937), 375-381.
- [8] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Trans. 2 (1969), no. 78, 103-118.

*

Department of Information Security, Cryptology, and Mathematics Kookmin University Seoul 02707, Republic of Korea

E-mail: kimjr@kookmin.ac.kr